사용자 도구

사이트 도구


drl:start

차이

문서의 선택한 두 판 사이의 차이를 보여줍니다.

차이 보기로 링크

양쪽 이전 판이전 판
다음 판
이전 판
drl:start [2016/12/02 09:11] rex8312drl:start [2024/03/23 02:42] (현재) – 바깥 편집 127.0.0.1
줄 1: 줄 1:
-===== General Video Game Playing 관련연구 목록 =====+===== General Video Game Playing ===== 
 + 
 +==== Learning Algorithm ==== 
 + 
 +  * [[https://arxiv.org/abs/1704.04651|The Reactor: A Sample-Efficient Actor-Critic Architecture]] 
 + 
 +==== Reward Shaping ==== 
 + 
 +  * [[https://arxiv.org/abs/1611.05397|Reinforcement Learning with Unsupervised Auxiliary Tasks]] 
 + 
 +==== Simulation ==== 
 + 
 +  * [[https://arxiv.org/abs/1704.02254|RECURRENT ENVIRONMENT SIMULATORS]] 
 +  * [[https://arxiv.org/abs/1507.08750|Action-Conditional Video Prediction using Deep Networks in Atari Games]] 
 +  *  
 + 
 +==== Learning by Instruction ==== 
 + 
 +  * [[https://arxiv.org/abs/1704.05539|Beating Atari with Natural Language Guided Reinforcement Learning]] 
 +==== ?? =====
  
   * ??   * ??
줄 17: 줄 36:
   * Progressive Network   * Progressive Network
     * A. A. Rusu et al., “Progressive neural networks,” arXiv preprint arXiv:1606.04671, 2016.     * A. A. Rusu et al., “Progressive neural networks,” arXiv preprint arXiv:1606.04671, 2016.
 +  * [[https://arxiv.org/pdf/1310.8499.pdf|2014-05, Deep AutoRegressive Networks]]
 +
  
 ==== Deep Reinforcement Learning 알고리즘 ==== ==== Deep Reinforcement Learning 알고리즘 ====
줄 39: 줄 60:
 ^Dueling Network | Z. Wang, N. de Freitas, and M. Lanctot, “Dueling network architectures for deep reinforcement learning,” arXiv preprint arXiv:1511.06581, 2015.| ^Dueling Network | Z. Wang, N. de Freitas, and M. Lanctot, “Dueling network architectures for deep reinforcement learning,” arXiv preprint arXiv:1511.06581, 2015.|
  
-==== Memory ==== 
  
-^Neural Turing Machine  |A. Graves, G. Wayne, and I. Danihelka, “Neural Turing Machines,” arXiv:1410.5401 [cs], Oct. 2014.| 
-^External Memory |A. Graves et al., “Hybrid computing using a neural network with dynamic external memory,” Nature, vol. 538, no. 7626, pp. 471–476, Oct. 2016. | 
  
-==== Reward Shaping ==== 
  
-^[[DRDL:UNREAL]] |[1]M. Jaderberg et al., “Reinforcement Learning with Unsupervised Auxiliary Tasks,” arXiv:1611.05397 [cs], Nov. 2016. |  
 ==== AI Platform ==== ==== AI Platform ====
  
 ^ViZDoom |M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski, “ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning,” arXiv:1605.02097 [cs], May 2016. | ^ViZDoom |M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski, “ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning,” arXiv:1605.02097 [cs], May 2016. |
-^ | |+^OpenAIGym|https://gym.openai.com/
 +^Universe|https://universe.openai.com/
 +^DeepMind Lab|https://deepmind.com/blog/open-sourcing-deepmind-lab/
 +^Malmo|https://github.com/Microsoft/malmo|
  
 ==== Application ==== ==== Application ====
줄 57: 줄 76:
 ^Anold |G. Lample and D. S. Chaplot, “Playing FPS Games with Deep Reinforcement Learning,” arXiv:1609.05521 [cs], Sep. 2016. | ^Anold |G. Lample and D. S. Chaplot, “Playing FPS Games with Deep Reinforcement Learning,” arXiv:1609.05521 [cs], Sep. 2016. |
  
 +===== 구현체 =====
  
-{{tag>DRL deep-learning reinforcement-learning}}+  * https://github.com/google/dopamine
      
  
  
  
drl/start.1480669861.txt.gz · 마지막으로 수정됨: 2024/03/23 02:38 (바깥 편집)