maine_learning:extream_learning_machine
차이
문서의 선택한 두 판 사이의 차이를 보여줍니다.
| 양쪽 이전 판이전 판다음 판 | 이전 판 | ||
| maine_learning:extream_learning_machine [2015/05/22 00:10] – rex8312 | maine_learning:extream_learning_machine [2024/03/23 02:42] (현재) – 바깥 편집 127.0.0.1 | ||
|---|---|---|---|
| 줄 16: | 줄 16: | ||
| * https:// | * https:// | ||
| + | <code python ELM.py> | ||
| + | import numpy as np | ||
| + | import plotille | ||
| + | import tqdm | ||
| + | from IPython import embed | ||
| + | from scipy.linalg import pinv2 | ||
| + | from sklearn.datasets import make_circles, | ||
| + | |||
| + | |||
| + | class ELM: | ||
| + | def __init__(self, | ||
| + | self.input_size = x.shape[-1] | ||
| + | if hidden_dim is None: | ||
| + | self.hidden_size = int(x.shape[0] / 7) | ||
| + | else: | ||
| + | self.hidden_size = hidden_dim | ||
| + | self.input_weights = np.random.normal(size=[self.input_size, | ||
| + | self.biases = np.random.normal(size=[self.hidden_size]) | ||
| + | self.output_weights = np.dot(pinv2(self.hidden_nodes(x)), | ||
| + | |||
| + | def hidden_nodes(self, | ||
| + | G = np.dot(X, self.input_weights) + self.biases | ||
| + | relu = lambda x_: np.maximum(x_, | ||
| + | H = relu(G) | ||
| + | return H | ||
| + | |||
| + | def __call__(self, | ||
| + | H = self.hidden_nodes(x) | ||
| + | y = np.dot(H, self.output_weights) | ||
| + | return y | ||
| + | |||
| + | |||
| + | if __name__ == ' | ||
| + | |||
| + | X, y = make_moons(n_samples=500, | ||
| + | X = (X - X.min(0) + 1e-6) / (X.max(0) - X.min(0) + 1e-6) | ||
| + | |||
| + | n_hiddens = list(range(2, | ||
| + | losses = list() | ||
| + | for n_hidden in tqdm.tqdm(n_hiddens): | ||
| + | mask = np.random.random(X.shape[0]) < 0.1 | ||
| + | train_x, train_y = X[mask], y[mask] | ||
| + | test_x, test_y = X[~mask], y[~mask] | ||
| + | model = ELM(train_x, | ||
| + | loss = (0.5 * (test_y - model(test_x)) ** 2).mean() | ||
| + | losses.append(loss) | ||
| + | |||
| + | print(plotille.plot(n_hiddens, | ||
| + | |||
| + | model = ELM(train_x, | ||
| + | loss = (0.5 * (test_y - model(test_x)) ** 2).mean() | ||
| + | embed(); exit() | ||
| + | </ | ||
| ===== 참고자료 ===== | ===== 참고자료 ===== | ||
| * Huang, Guang-Bin, Dian Hui Wang, and Yuan Lan. " | * Huang, Guang-Bin, Dian Hui Wang, and Yuan Lan. " | ||
| + | * https:// | ||
| * http:// | * http:// | ||
maine_learning/extream_learning_machine.1432253440.txt.gz · 마지막으로 수정됨: (바깥 편집)