내용으로 건너뛰기
Out of the Box
사용자 도구
로그인
사이트 도구
검색
도구
문서 보기
이전 판
Fold/unfold all
역링크
최근 바뀜
미디어 관리자
사이트맵
로그인
>
최근 바뀜
미디어 관리자
사이트맵
추적:
example:ppo
이 문서는 읽기 전용입니다. 원본을 볼 수는 있지만 바꿀 수는 없습니다. 문제가 있다고 생각하면 관리자에게 문의하세요.
======= Example: PPO ====== <code python ppo-example.py> #!/usr/bin/env python """ conda create -n ppo python=3.7 numpy ipython matplotlib swig termcolor tqdm scipy tensorboard conda install pytorch torchvision cudatoolkit=10.2 -c pytorch pip install gym[box2d] pip install plotille """ import argparse import threading from collections import deque import gym import matplotlib.pyplot as plt import numpy as np import plotille import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import tqdm from IPython import embed from torch.utils.tensorboard import SummaryWriter def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--logdir', type=str) parser.add_argument('--max_frames', type=int) parser.add_argument('--eval', action='store_true') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--n_envs', type=int, default=8) parser.add_argument('--horizon', type=int, default=2048) parser.add_argument('--mini_batch_size', type=int, default=128) parser.add_argument('--lr', type=float, default=0.0005) parser.add_argument('--weight_decay', type=float, default=0.0) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--lam', type=float, default=0.99) parser.add_argument('--clip_range', type=float, default=0.2) parser.add_argument('--max_grad', type=float, default=10.0) parser.add_argument('--value_coef', type=float, default=0.5) parser.add_argument('--ent_coef', type=float, default=0.01) return parser.parse_args() class Model(nn.Module): def __init__(self, n_features, n_actions): super().__init__() self.fc1 = nn.Linear(n_features, 32) self.norm1 = nn.LayerNorm(32) self.vf = nn.Linear(32, 1) self.policy = nn.Linear(32, n_actions) self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=0.02) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def forward(self, x): x = torch.relu(self.norm1(self.fc1(x))) logit = self.policy(x) return self.vf(x), F.log_softmax(logit, -1), F.softmax(logit, -1) if __name__ == '__main__': args = parse_args() np.random.seed(args.seed) torch.manual_seed(args.seed) writer = SummaryWriter(args.logdir) # 환경 생성 env = gym.vector.make('LunarLander-v2', num_envs=args.n_envs) env.seed(args.seed) n_features = env.observation_space.shape[1] n_actions = env.action_space[0].n # 모델 & 옵티마이저 생성 model = Model(n_features, n_actions) model_old = Model(n_features, n_actions) model_old.load_state_dict(model.state_dict()) optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) # 테스트 게임 시작 def run_test_game(): test_env = gym.make('LunarLander-v2') test_env.seed(args.seed) while True: test_state = test_env.reset() score = 0 while True: with torch.no_grad(): _, _, prob = model_old( torch.from_numpy(test_state).float().view(1, -1) ) action = prob.multinomial(1).item() test_state, r, done, _ = test_env.step(action) score += r test_env.render() if done: score = 0 break if args.eval: threading.Thread(target=run_test_game, daemon=True).start() # 버퍼 생성 D_obs = np.zeros((args.horizon, args.n_envs, n_features)) D_action = np.zeros((args.horizon, args.n_envs)) D_reward = np.zeros((args.horizon, args.n_envs)) D_done = np.zeros((args.horizon, args.n_envs)) D_value = np.zeros((args.horizon, args.n_envs)) D_logp = np.zeros((args.horizon, args.n_envs, n_actions)) # 학습 시작 frames = 0 score = np.zeros(args.n_envs) n_scores_in_epoch = 0 scores = deque(maxlen=10000) obs_prime = env.reset() while True: obs = obs_prime for D_i in tqdm.trange(args.horizon, desc='Rollout'): # 게임 플레이 & 데이터 수집 with torch.no_grad(): value, logp, prob = model_old(torch.from_numpy(obs).float()) action = prob.multinomial(num_samples=1).numpy().reshape(-1) obs_prime, reward, done, info = env.step(action) # 점수 기록 score += reward scores.extend([(frames, s) for s in score[done]]) score[done] = 0 n_scores_in_epoch += done.sum() # 데이터 저장 D_obs[D_i] = obs D_action[D_i] = action D_reward[D_i] = reward / 100. D_done[D_i] = done D_value[D_i] = value.view(-1).numpy() D_logp[D_i] = logp.numpy() obs = obs_prime frames += args.n_envs # 데이터 수집 완료 D_i = 0 # gamma gamma = args.gamma * (1 - D_done) # return 계산 D_ret = np.zeros((args.horizon + 1, args.n_envs)) with torch.no_grad(): value, _, _ = model_old(torch.from_numpy(D_obs[-1]).float()) D_ret[-1] = value.view(-1).numpy() for t in reversed(range(args.horizon)): D_ret[t] = D_reward[t] + gamma[t] * D_ret[t+1] D_ret = D_ret[:-1] # adv 계산 value_ = np.vstack([D_value, value.numpy().transpose(1, 0)]) delta = D_reward + gamma * value_[1:] - value_[:-1] D_adv = np.zeros((args.horizon, args.n_envs)) gae = 0 for t in reversed(range(args.horizon)): gae = gae * gamma[t] * args.lam + delta[t] D_adv[t] = gae # batch 차원 제거 FD_obs = D_obs.reshape(-1, n_features) FD_action = D_action.reshape(-1) FD_logp = D_logp.reshape(-1, n_actions) FD_ret = D_ret.reshape(-1) FD_adv = D_adv.reshape(-1) # adv 정규화 FD_adv = (FD_adv - FD_adv.mean()) / (FD_adv.std() + 1e-8) # 미니배치 index 준비 idx = np.arange(args.horizon * args.n_envs) np.random.shuffle(idx) n_mini_batchs = args.horizon * args.n_envs // args.mini_batch_size for mb_i in tqdm.trange(n_mini_batchs, desc='Fit'): # 미니배치 준비 sel = idx[mb_i * args.mini_batch_size: (mb_i+1) * args.mini_batch_size] obs = torch.from_numpy(FD_obs[sel]).float() action = torch.from_numpy(FD_action[sel]).long() ret = torch.from_numpy(FD_ret[sel]).float() adv = torch.from_numpy(FD_adv[sel]).float() logp_old = torch.from_numpy(FD_logp[sel]).float() # 그래프 생성 value, logp, prob = model(obs) logp_a = logp.gather(1, action.view(-1, 1)).view(-1) logp_old_a = logp_old.gather(1, action.view(-1, 1)).view(-1) # loss_v ## loss_v = 0.5 * (ret - value.view(ret.shape)).pow(2).mean() loss_v = F.smooth_l1_loss(value, ret.view(value.shape)) # loss_pi ratios = torch.exp(logp_a - logp_old_a) policy_loss1 = -adv * ratios clip_range = args.clip_range policy_loss2 = -adv * torch.clamp(ratios, min=1.0 - clip_range, max=1.0 + clip_range) loss_pi = torch.mean(torch.max(policy_loss1, policy_loss2)) # entropy entropy = -(prob * logp).sum(-1).mean() loss = loss_v * args.value_coef + loss_pi - args.ent_coef * entropy optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad) optimizer.step() # 학습결과 출력 scores_x, scores_y = zip(*scores) mean_score = np.mean(scores_y[-n_scores_in_epoch:]) print(plotille.scatter(scores_x, scores_y, height=25, color_mode='byte')) print(plotille.histogram(scores_y[-n_scores_in_epoch:], bins=n_scores_in_epoch//5, height=25, color_mode='byte')) n_scores_in_epoch = 0 print( f'{frames:,} => {mean_score:.3f}, ' f'ret: {D_ret.mean():.3f}, ' f'v: {value.mean():.3f}, ' f'ent.: {entropy:.3f}, ' f'L_v: {loss_v.item():.3f}, ' f'L_pi: {loss_pi.item():.3f}, ' ) writer.add_scalar('metric/score', mean_score, global_step=frames) writer.add_scalar('metric/ret', D_ret.mean(), global_step=frames) writer.add_scalar('metric/v', value.mean(), global_step=frames) writer.add_scalar('metric/ent', entropy, global_step=frames) writer.add_scalar('loss/v', loss_v.item(), global_step=frames) writer.add_scalar('loss/pi', loss_pi.item(), global_step=frames) # target 모델 교체 model_old.load_state_dict(model.state_dict()) if args.max_frames is not None and frames > args.max_frames: writer.add_hparams(dict(algo='ppo'), dict(final_score=mean_score)) break </code> {{tag>PPO example lunar_lander}}
example/ppo.txt
· 마지막으로 수정됨: 2024/03/23 02:42 저자
127.0.0.1
문서 도구
문서 보기
이전 판
역링크
Fold/unfold all
맨 위로