====== CUDA ======
* [[http://tleyden.github.io/blog/2014/10/25/cuda-6-dot-5-on-aws-gpu-instance-running-ubuntu-14-dot-04/]]
* AWS에 CUDA 6.5 설치
환경변수로 CUDA device 설정
# CUDA 사용금지
os.environ['CUDA_VISIBLE_DEVICES'] = ""
# 또는
os.environ['CUDA_VISIBLE_DEVICES'] = "-1"
# 첫 번째 디바이스만 보임
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
===== Mixed precision =====
* https://devblogs.nvidia.com/apex-pytorch-easy-mixed-precision-training/
* https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
===== CUDA 관련 도구 =====
=== nvidia-smi ===
nvidia 디바이스 정보 보여주는 도구
windows에서는 "C:\Program Files\NVIDIA Corporation\NVSMI"에 있음
nvidia-smi -l # 주기적으로 디바이스 정보를 출력
nvidia-smi -lms T # T ms 마다 디바이스 정보를 출력
nvidia-smi dmon # 실시간으로 gpu, 메모리 사용, 온도 출력
=== nvidia driver 설치 ===
드라이버 삭제
nvidia-installer --uninstall
최신 버전 드라이버 설치
nvidia-installer --update
* http://www.linuxquestions.org/questions/slackware-14/cannot-reinstall-nvidia-driver-module-being-loaded-wtf-296828/
=== 팬 속도 조절 ===
sudo nvidia-xconfig
sudo nvidia-xconfig --cool-bits=4
# command line에서 조절
## 읽기
nvidia-settings -q [gpu:0]/GPUCoreTemp -c :0.0
nvidia-settings -q [fan:0]/GPUCurrentFanSpeed -c :0.0
## 쓰기
nvidia-settings -a [gpu:0]/GPUFanControlState=1 -a [fan:0]/GPUTargetFanSpeed=75 -c :0.0
## 멀티 GPU
nvidia-settings -a "[gpu:0]/GPUFanControlState=1" -a "[fan:0]/GPUCurrentFanSpeed=n" \
-a "[gpu:1]/GPUFanControlState=1" -a [fan:1]/GPUCurrentFanSpeed=n" &
* http://askubuntu.com/questions/42494/how-can-i-change-the-nvidia-gpu-fan-speed
* https://bbs.archlinux.org/viewtopic.php?id=196716
* http://blog.cryptohaze.com/2011/02/scripts-to-control-nvidia-fan-speeds.html
* https://github.com/MisterPup/Nvidia-Dynamic-Fan-Control
* https://wiki.archlinux.org/index.php/NVIDIA/Tips_and_tricks
===== AWS + Docker + CUDA =====
* http://tleyden.github.io/blog/2014/10/25/docker-on-aws-gpu-ubuntu-14-dot-04-slash-cuda-6-dot-5/
===== Docker =====
* https://github.com/NVIDIA/nvidia-docker
===== Headless GPU의 fan 속도 조절 ======
* https://sites.google.com/site/akohlmey/random-hacks/nvidia-gpu-coolness
* https://github.com/boris-dimitrov/set_gpu_fans_public
* https://gist.github.com/clarkwinkelmann/13af7a328fb20b9a7d78
* http://thomascomputerrepair.com/nvidia-settings-kde.php
===== GPU 모니터링 및 작업할당 =====
* https://medium.com/mlreview/using-your-idle-deep-learning-hardware-for-mining-c1b9887491fa
===== python =====
* https://towardsdatascience.com/python-performance-and-gpus-1be860ffd58d?ncid=so-twi-n2-96487&linkId=100000006881312
===== 라이브러리 ======
* cuDF: GPU DataFrames
* https://github.com/rapidsai/cudf
* cuML: scikit-learn과 유사한 ML 라이브러리
* https://github.com/rapidsai/cuml
* cuGraph: 그래프 라이브러리
* https://github.com/rapidsai/cugraph
* Rapids: https://rapids.ai/start.html