$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$
$P(hypothesis|observation) = \frac{P(observation|hypothesis) P(hypothesis)}{P(observation)}$
$posterior = \frac{likelihood \times priori}{evidence}$
$P(\theta_j|X) = \frac{P(X|\theta_j) P(\theta_j)}{\sum_j{P(X|\theta_j)P(\theta_j)}} = \frac{P(X|\theta_j) P(\theta_j)}{P(X)}$