e = 0.1 if np.random.rand(1) < e: action = random.randint(0, n_actions-1) else: q_val = model(state) action = np.argmax(q_val)
t = 0.5 q_val = model(state) probs = F.softmax(q_val / t, dim=1) # torch action = prob.multinomial(num_samples=1).data # numpy action = np.random.choice(n_actions, p=probs)
t = 0.5 q_val = model(state) probs = F.softmax(q_val / t, dim=1) # torch action = prob.multinomial(num_samples=1).data action_log_prob = log_prob.gather(1, torch.LongTensor([[action]]).to(device)) # numpy action = np.random.choice(n_actions, p=probs) action_log_prob = np.take(log_prob, [1], axis=1) # action_log_prob = log_prob[0][action]