code:gpt_example
문서의 이전 판입니다!
GPT 예제
- 참고
- gpt.py
import numpy as np import plotille import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import tqdm from gr.pygr import mlab from IPython import embed class MultiheadAttention(nn.Module): def __init__(self, key_dim, num_heads, drop=0.1): super().__init__() self.temperature = np.power(key_dim, 0.5) self.n_heads = num_heads self.dropout = nn.Dropout(drop) def forward(self, q, k, v, attn_mask): q = self.split_heads(q) k = self.split_heads(k) v = self.split_heads(v) energy = torch.bmm(q, k.transpose(1, 2)) / self.temperature energy.masked_fill_(attn_mask, -np.inf) attn = F.softmax(energy, dim=2) context = torch.bmm(attn, v) context = self.merge_heads(context) context = self.dropout(context) return context, attn def split_heads(self, x): seq, bs, emb = x.size() d_k = emb // self.n_heads x = x.view(seq, bs, self.n_heads, d_k) x = x.permute(1, 2, 0, 3) x = x.reshape(bs * self.n_heads, seq, d_k) return x def merge_heads(self, x): bs_heads, seq, d_k = x.size() bs = bs_heads // self.n_heads x = x.view(bs, self.n_heads, seq, d_k) x = x.permute(2, 0, 1, 3) x = x.reshape(seq, bs, self.n_heads * d_k) return x class MHA(nn.Module): def __init__(self, embed_dim, num_heads): super().__init__() self.n_heads = num_heads self.attn = MultiheadAttention(embed_dim, num_heads) # self.attn = nn.MultiheadAttention(embed_dim, num_heads) self.query = nn.Linear(embed_dim, embed_dim) self.key = nn.Linear(embed_dim, embed_dim) self.value = nn.Linear(embed_dim, embed_dim) self.out = nn.Linear(embed_dim, embed_dim) layers = (self.query, self.key, self.value, self.out) for layer in layers: torch.nn.init.normal_(layer.weight, std=0.02) torch.nn.init.uniform_(layer.bias, -0.001, 0.001) def forward(self, x): seq = x.size(0) q = self.query(x) k = self.key(x) v = self.value(x) mask = (torch.tril(torch.ones(seq, seq)) == 0).to(x.device) context, attn_weights = self.attn(q, k, v, attn_mask=mask) return self.out(context) class MLP(nn.Module): def __init__(self, embed_dim, factor=4): super(MLP, self).__init__() self.fc = nn.Linear(embed_dim, embed_dim * factor) self.fc2 = nn.Linear(embed_dim * factor, embed_dim) torch.nn.init.normal_(self.fc.weight, std=0.02) torch.nn.init.uniform_(self.fc.bias, -0.001, 0.001) torch.nn.init.normal_(self.fc2.weight, std=0.02) torch.nn.init.uniform_(self.fc2.bias, -0.001, 0.001) def forward(self, x): h = F.gelu(self.fc(x)) return self.fc2(h) class Block(nn.Module): def __init__(self, embed_dim, num_heads): super(Block, self).__init__() self.ln_1 = nn.LayerNorm(embed_dim) self.attn = MHA(embed_dim, num_heads) self.ln_2 = nn.LayerNorm(embed_dim) self.mlp = MLP(embed_dim) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class GPTModel(nn.Module): def __init__(self, input_dims, output_dims): super().__init__() self.n_layers = 3 self.n_heads = 16 self.d_model = 512 self.max_len = 32 self.we = nn.Linear(input_dims, self.d_model, bias=False) self.wp = nn.Embedding(self.max_len, self.d_model, padding_idx=0) self.blocks = nn.ModuleList([Block(self.d_model, self.n_heads) for _ in range(self.n_layers)]) self.norm = nn.LayerNorm(self.d_model) self.wd = nn.Linear(self.d_model, output_dims, bias=True) torch.nn.init.normal_(self.we.weight, std=0.02) torch.nn.init.uniform_(self.wp.weight, -0.01, 0.01) torch.nn.init.normal_(self.wd.weight, std=0.02) torch.nn.init.normal_(self.wd.bias, std=0.001) def forward(self, src): seq_len, mb, _ = src.size() src_embed = self.we(src) pos_embed = self.wp(torch.arange(len(src), device=src.device)).unsqueeze(1) hx = src_embed + pos_embed for block in self.blocks: hx = block(hx) hx = self.norm(hx) out = (hx.view(seq_len * mb, -1) @ self.we.weight).view(seq_len, mb, -1) # out = self.wd(self.norm(hx)) src = torch.cat([src[1:], out[-1:]], dim=0).detach() return out, src if __name__ == '__main__': n_epochs = 2500 seq_len = 16 prev_steps = 16 next_steps = 32 mb = 32 device = 'cuda' dataset = np.sin(np.arange(1024) / 10.) model = GPTModel(1, 1).to(device) optimizer = optim.Adam( model.parameters(), lr=0.00001, betas=(0.9, 0.95), eps=1e-8 ) step = 0 loss_list = list() for _ in tqdm.trange(n_epochs): bid = np.random.randint( 0, len(dataset)-(prev_steps + next_steps), (len(dataset) // mb, mb) ).reshape((len(dataset) // mb, 1, mb)) pos = np.arange(prev_steps + next_steps).reshape(1, -1, 1) idxes = bid + pos for idx in idxes: data = dataset[idx].reshape((prev_steps + next_steps, mb, 1)) data = torch.tensor(data, dtype=torch.float32, device=device) src, tgt = data[:prev_steps], data[prev_steps:] gen = torch.empty(0, mb, 1, dtype=torch.float32, device=device) for _ in range(next_steps): gen_, src = model(src) gen = torch.cat([gen, gen_[-1:]], dim=0) optimizer.zero_grad() loss = (0.5 * (tgt - gen) ** 2).mean() loss.backward() optimizer.step() step += 1 / len(idxes) loss_list.append((step, loss.item())) mlab.plot(data[:, 0, 0].cpu().numpy()) mlab.oplot( torch.cat([data[:prev_steps, 0, 0], gen[:, 0, 0]], dim=0).detach().cpu().numpy() ) tqdm.tqdm.write(plotille.scatter(*zip(*loss_list[-1000:]))) embed()
code/gpt_example.1596046689.txt.gz · 마지막으로 수정됨: (바깥 편집)