문서의 이전 판입니다!
PyTorch
# https://gist.github.com/avacariu/92db7b7f1fa1696279e9029f0237e2d4
#!/usr/bin/env python3.6
import time
import tensorflow as tf
summary_writer = tf.summary.FileWriter("./logdir")
for i in range(100_000):
s = tf.Summary(value=[tf.Summary.Value(tag="the-value", simple_value=i/10)])
summary_writer.add_summary(s, i)
time.sleep(0.5)
# while the above is running, execute
# tensorboard --logdir ./logdir
# See https://github.com/lanpa/tensorboard-pytorch/blob/master/tensorboardX/summary.py
# for different kinds of summaries you can create (e.g. histograms)
col.insert_one(dict(state_dict=cloudpickle.dumps(net.state_dict()))
state_dict = cloudpickle.loads(col.find_one()['state_dict'])
loss.backward()
for p in model.parameters():
p.grad *= C # or whatever other operation
optimizer.step()
for param in model.parameters():
param.requires_grad = False
soft_tau = 0.01
for target_param, param in zip(target_net.parameters(), net.parameters()):
target_param.data.copy_(target_param.data * (1.0 - soft_tau) + param.data * soft_tau)
torch.set_printoptions(linewidth=120)
torch.set_grad_enabled(True)