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Abstract—Designing fighting game AI has been a 

challenging problem because the program should react in real-

time and require expert knowledge on the combination of 

actions. In fact, most of entries in 2013 fighting game AI 

competition were based on expert rules. In this paper, we 

propose an automatic policy learning method for the fighting 

game AI bot. In the training stage, the AI continuously plays 

fighting games against 12 bots (10 from 2013 competition 

entries and 2 examples) and stores massive play data (about 10 

GB). UCB1 is used to collect the data actively.  In the testing 

stage, the agent searches for the similar situations from the 

logs and selects skills with the highest rewards. In this way, it 

is possible to construct the fighting game AI with minimum 

expert knowledge. Experimental results show that the learned 

agent can defeat two example bots and show comparable 

performance against the winner of 2013 competition.  
Keywords—Fighting game AI; Multi-armed bandits problem; 

UCB1; Game AI competition 

I. INTRODUCTION 

 The fighting game has been one of the favorite video game 
genres and usually played by two human players. Although 
computer programs have been used to enjoy human players, 
they’re designed manually by experts. Recently, the fighting 
game AI competition is introduced to promote the invention of 
new AI techniques for the game. In 2013 competition, the most 
of entries were designed manually. However, Mizuno AI from 
the organizer introduced the use of machine learning (K-
Nearest Neighbor) after the last year’s competition.   

     The design of game AI from the player’s logs has been 
challenging research issue. For example, Cho et al. used 
human expert’s replay files to build a strategy prediction model 
using machine learning [1]. It shows that the use of play logs 
can be useful on the design of game AI. The process includes 
logging of game playing from human players and/or bots. 
From the data, the computer program learns the mapping 
between game states and proper actions.  

In this paper, we propose to build the fighting game AI 
from the matches against bots. The most significant problem is 
that it is impossible to collect data for all possible states and 
actions. Because the fighting game considers several factors to 
select actions, it is not a trivial task to test all possible game 

states and actions combinations. It is necessary to collect data 
efficiently to maximize the chance of high rewards.  

The identification of good actions for the given 
circumstance can be defined as multi-armed bandit problem [2] 
which suffers from the exploration-exploitation dilemma. For 
instance, if there are N slot machines, a player can choose to 
pull the lever of machines M times in total and each slot 
machine’s expectation reward is different. How the player can 
maximize the reward? If we know the “true” reward 
expectations of each machine, we can pull the lever of the 
highest reward machine (exploitation). Unfortunately, we don’t 
know the “true” reward expectation of each machine without 
many trials. Therefore, we need experiments to get estimation 
of reward (exploration). If the given chance M is limited, then 
we have to balance between exploitation and exploration. 

We propose to collect game data actively focusing on the 
cases with high rewards. During the data collection stage, our 
bots selects an action against opponents using UCB1 (upper 
confidence bound 1). In order to test our idea, we use the 
fighting game AI competition platform [3]. This platform 
supports basic fighting game components and bot API. Anyone 
can easily implement own entry and submit it to the 
competition. In this work, we consider the first order Markov 
decision process which simplify the inference of the actions 
from the collected data.  

II.  PROPOSED METHOD 

 We define all conditions around the AI player as state, and 
there are a list of possible actions at each state (11 skills + 1 
key combination for guard). Reward is defined as the 
difference between “hit” to the opponent and “damage” from 
him after short time delay. The reward is the summation of 
difference of between hit to opponent  damage (h) and from 
opponent (d) for 120 frames after the action execution 
(reward=∑ri(hi-di), i: frame index from action start, r: 
degrading factor, 0.98). 

Our goal is to find good policies (state-action mapping with 
high reward) for the current state. In the training stage, our bot 
collects game logs (state, action, and reward). In addition to the 
sensory data from the fighting game, the player adopts “K-
Nearest Neighbor” during the match to predict the next actions 
of the opponent. The estimation is also stored in the “state.”  

UCB1 is one of popular algorithms to handle the 
exploitation and exploration dilemma [2]. This algorithm 
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selects the action  j that gets the highest UCB1 value (equation 
1). It linearly combines estimated expectation reward (x̅j) and 
curiosity (right term) of specific action j (n: # of trial of all 
actions, nj: # of the action j’s trial). Eventually, this value 
becomes higher when the action j’s reward is high and/or 
curiosity term is high. The UCB1 is used to collect the data 
actively.  

 

 

(1) 

A hashing function is introduced to speed up searching for 
the most similar situation. The input to the function is the 
distance between players, skills of opponent, and estimated 
skills. The hashing function is used to quantize the huge 
number of games states into the buckets. In the actual match, 
our agent identifies the bucket using the current game state and 
selects an action with the highest reward. Fig. 1 summarizes 
the data collection and playing games with the data. 

Fig. 1. Overview of the proposed method 

 Fig. 2 shows the operation of action selection for our 
learned agent. The hash function returns a key for the current 
game state. For each key, there is a list of game logs storing 
state-action-reward sets. If the number of data is N, there are N 
pairs of action and rewards. For each action, the agent averages 
all rewards for the action. It selects an action with the highest 
average of rewards.  

Fig. 2. Reward estimation method 

III.  EXPERIMENTAL RESULTS 

 In the training stage, our program plays fighting games 
against 12 bots (ten 2013 entries and two examples (random AI 
and Mizuno AI). The random AI presses the key’s on/off 
randomly. The Mizuno AI uses K-Nearest Neighbor algorithm. 
For each opponent, the agent plays 50 games. In total, it plays 
600 games (10 hours). The size of data is 10GB (the logs are 
stored in JSON format). In the training data, there are 
state/action/rewards of each moment but the opponent player’s 
name is not stored.   

      In the test, we use three representative players (random AI, 
Mizuno AI and “T” from 2013 competition). To the best of our 
knowledge, the Mizuno AI is the only agent with learning 
capability. And most of entries of 2013 competition was 
designed manually. “T” is the winning entry of the 2013 
competition and is designed with finite state machine. In the 
last year’s competition, ten entries was submitted. It showed 
that the “T” outperforms all other entries. However, we found 
that the Mizuno AI outperforms the “T.”  (Mizuno AI was not 
an entry of 2013 competition and included recently.)  

     In the game, the two players have three matches (about 3 
minutes). The final scores are calculated based on the player 
and opponent’s health power. We follow the scoring metric 
used in the 2013 fighting game AI competition. The sum of 
two players’ scores is 1000. Table I  summarizes the scores of 
the matches between the learned agent and the three players. It 
shows that our agent outperforms the “random AI” and the 
Mizuno AI. Although “T” is strong against our program, the 
scores acquired (387) is comparable to the scores (average 253) 
in the last year’s entries against “T.”  

TABLE I.  PERFORMANCE OF LEARNED BOTS 

 
Opponent Bots 

Random AI 

(example) 

T  

(1st rank) 

mizunoAI 

(example) 

Learning + Simple 

Rules for Defense 

793.9 / 206.5 387.3 / 612.6 645.6 / 354.4 

Learning 799.8 / 200.1 340.9 / 659.0 595.4 / 404.5 

* Average of 30 experiments, trained bot’s point / opponent bot’s point 

IV. CONCLUSIONS AND FUTURE WORKS 

In this work, we propose to use data-driven learning for the 

design of fighting game AI competition. The agent uses 

massive play data to select actions given the situation. It can 

significantly reduce the effort to design the AI agent from trial 

and errors. In the data collection, UCB1 is used to collect data 

effectively with a balance of exploration and exploitation. 

Because the data is massive, hashing is used to accelerate the 

search speed when the agent plays an actual game. 

Experimental results show that the learned agent can be better 

than random AI and other learning-based controller (Mizuno 

AI). Also, our bots show comparable performance against the 

winner of 2013 competition.   

As a future work, it needs to design a better hash function 

assigning similar number of samples into the buckets. Also, 

the current approach considers only immediate rewards from 

the actions. However, it is desirable to consider delayed 

rewards from a sequence of actions (combination of skills).  
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