
Learning to Play Fighting Game

using Massive Play Data

Hyunsoo Park, and Kyung-Joong Kim*

Department of Computer Science and Engineering

Sejong University, Seoul, South Korea

hspark@sju.ac.kr, kimkj@sejong.ac.kr

Abstract—Designing fighting game AI has been a

challenging problem because the program should react in real-

time and require expert knowledge on the combination of

actions. In fact, most of entries in 2013 fighting game AI

competition were based on expert rules. In this paper, we

propose an automatic policy learning method for the fighting

game AI bot. In the training stage, the AI continuously plays

fighting games against 12 bots (10 from 2013 competition

entries and 2 examples) and stores massive play data (about 10

GB). UCB1 is used to collect the data actively. In the testing

stage, the agent searches for the similar situations from the

logs and selects skills with the highest rewards. In this way, it

is possible to construct the fighting game AI with minimum

expert knowledge. Experimental results show that the learned

agent can defeat two example bots and show comparable

performance against the winner of 2013 competition.
Keywords—Fighting game AI; Multi-armed bandits problem;

UCB1; Game AI competition

I. INTRODUCTION

 The fighting game has been one of the favorite video game
genres and usually played by two human players. Although
computer programs have been used to enjoy human players,
they’re designed manually by experts. Recently, the fighting
game AI competition is introduced to promote the invention of
new AI techniques for the game. In 2013 competition, the most
of entries were designed manually. However, Mizuno AI from
the organizer introduced the use of machine learning (K-
Nearest Neighbor) after the last year’s competition.

 The design of game AI from the player’s logs has been
challenging research issue. For example, Cho et al. used
human expert’s replay files to build a strategy prediction model
using machine learning [1]. It shows that the use of play logs
can be useful on the design of game AI. The process includes
logging of game playing from human players and/or bots.
From the data, the computer program learns the mapping
between game states and proper actions.

In this paper, we propose to build the fighting game AI
from the matches against bots. The most significant problem is
that it is impossible to collect data for all possible states and
actions. Because the fighting game considers several factors to
select actions, it is not a trivial task to test all possible game

states and actions combinations. It is necessary to collect data
efficiently to maximize the chance of high rewards.

The identification of good actions for the given
circumstance can be defined as multi-armed bandit problem [2]
which suffers from the exploration-exploitation dilemma. For
instance, if there are N slot machines, a player can choose to
pull the lever of machines M times in total and each slot
machine’s expectation reward is different. How the player can
maximize the reward? If we know the “true” reward
expectations of each machine, we can pull the lever of the
highest reward machine (exploitation). Unfortunately, we don’t
know the “true” reward expectation of each machine without
many trials. Therefore, we need experiments to get estimation
of reward (exploration). If the given chance M is limited, then
we have to balance between exploitation and exploration.

We propose to collect game data actively focusing on the
cases with high rewards. During the data collection stage, our
bots selects an action against opponents using UCB1 (upper
confidence bound 1). In order to test our idea, we use the
fighting game AI competition platform [3]. This platform
supports basic fighting game components and bot API. Anyone
can easily implement own entry and submit it to the
competition. In this work, we consider the first order Markov
decision process which simplify the inference of the actions
from the collected data.

II. PROPOSED METHOD

 We define all conditions around the AI player as state, and
there are a list of possible actions at each state (11 skills + 1
key combination for guard). Reward is defined as the
difference between “hit” to the opponent and “damage” from
him after short time delay. The reward is the summation of
difference of between hit to opponent damage (h) and from
opponent (d) for 120 frames after the action execution
(reward=∑ri(hi-di), i: frame index from action start, r:
degrading factor, 0.98).

Our goal is to find good policies (state-action mapping with
high reward) for the current state. In the training stage, our bot
collects game logs (state, action, and reward). In addition to the
sensory data from the fighting game, the player adopts “K-
Nearest Neighbor” during the match to predict the next actions
of the opponent. The estimation is also stored in the “state.”

UCB1 is one of popular algorithms to handle the
exploitation and exploration dilemma [2]. This algorithm

This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIP) (2013

R1A2A2A01016589, 2010-0018950).

*: corresponding author

 978-1-4799-3547-5/14/1.00 ©2014 IEEE

mailto:hspark@sju.ac.kr
mailto:kimkj@sejong.ac.kr

selects the action j that gets the highest UCB1 value (equation
1). It linearly combines estimated expectation reward (x̅j) and
curiosity (right term) of specific action j (n: # of trial of all
actions, nj: # of the action j’s trial). Eventually, this value
becomes higher when the action j’s reward is high and/or
curiosity term is high. The UCB1 is used to collect the data
actively.

(1)

A hashing function is introduced to speed up searching for
the most similar situation. The input to the function is the
distance between players, skills of opponent, and estimated
skills. The hashing function is used to quantize the huge
number of games states into the buckets. In the actual match,
our agent identifies the bucket using the current game state and
selects an action with the highest reward. Fig. 1 summarizes
the data collection and playing games with the data.

Fig. 1. Overview of the proposed method

 Fig. 2 shows the operation of action selection for our
learned agent. The hash function returns a key for the current
game state. For each key, there is a list of game logs storing
state-action-reward sets. If the number of data is N, there are N
pairs of action and rewards. For each action, the agent averages
all rewards for the action. It selects an action with the highest
average of rewards.

Fig. 2. Reward estimation method

III. EXPERIMENTAL RESULTS

 In the training stage, our program plays fighting games
against 12 bots (ten 2013 entries and two examples (random AI
and Mizuno AI). The random AI presses the key’s on/off
randomly. The Mizuno AI uses K-Nearest Neighbor algorithm.
For each opponent, the agent plays 50 games. In total, it plays
600 games (10 hours). The size of data is 10GB (the logs are
stored in JSON format). In the training data, there are
state/action/rewards of each moment but the opponent player’s
name is not stored.

 In the test, we use three representative players (random AI,
Mizuno AI and “T” from 2013 competition). To the best of our
knowledge, the Mizuno AI is the only agent with learning
capability. And most of entries of 2013 competition was
designed manually. “T” is the winning entry of the 2013
competition and is designed with finite state machine. In the
last year’s competition, ten entries was submitted. It showed
that the “T” outperforms all other entries. However, we found
that the Mizuno AI outperforms the “T.” (Mizuno AI was not
an entry of 2013 competition and included recently.)

 In the game, the two players have three matches (about 3
minutes). The final scores are calculated based on the player
and opponent’s health power. We follow the scoring metric
used in the 2013 fighting game AI competition. The sum of
two players’ scores is 1000. Table I summarizes the scores of
the matches between the learned agent and the three players. It
shows that our agent outperforms the “random AI” and the
Mizuno AI. Although “T” is strong against our program, the
scores acquired (387) is comparable to the scores (average 253)
in the last year’s entries against “T.”

TABLE I. PERFORMANCE OF LEARNED BOTS

Opponent Bots

Random AI

(example)

T

(1st rank)

mizunoAI

(example)

Learning + Simple

Rules for Defense

793.9 / 206.5 387.3 / 612.6 645.6 / 354.4

Learning 799.8 / 200.1 340.9 / 659.0 595.4 / 404.5

* Average of 30 experiments, trained bot’s point / opponent bot’s point

IV. CONCLUSIONS AND FUTURE WORKS

In this work, we propose to use data-driven learning for the

design of fighting game AI competition. The agent uses

massive play data to select actions given the situation. It can

significantly reduce the effort to design the AI agent from trial

and errors. In the data collection, UCB1 is used to collect data

effectively with a balance of exploration and exploitation.

Because the data is massive, hashing is used to accelerate the

search speed when the agent plays an actual game.

Experimental results show that the learned agent can be better

than random AI and other learning-based controller (Mizuno

AI). Also, our bots show comparable performance against the

winner of 2013 competition.

As a future work, it needs to design a better hash function

assigning similar number of samples into the buckets. Also,

the current approach considers only immediate rewards from

the actions. However, it is desirable to consider delayed

rewards from a sequence of actions (combination of skills).

REFERENCES

[1] H.-C. Cho, K.-J. Kim, and S.-B. Cho, “Replay-based strategy prediction
and build order adaptation for StarCraft AI bots,” in 2013 IEEE Conf.

on Computational Intelligence in Games (CIG), 2013, pp. 1–7.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the
Multiarmed Bandit Problem,” Mach. Learn., vol. 47, no. 2–3, pp. 235–

256, May 2002.

[3] F. Lu, K. Yamamoto, L. H. Nomura, S. Mizuno, Y. Lee, and R.
Thawonmas, “Fighting game artificial intelligence competition

platform,” in Consumer Electronics (GCCE), 2013 IEEE 2nd Global

Conference on, 2013, pp. 320–323.

