
 Procedia Computer Science 24 (2013) 158 – 166

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the Program Committee of IES2013
doi: 10.1016/j.procs.2013.10.039

ScienceDirect
Available online at www.sciencedirect.com

17th Asia Pacific Symposium on Intelligent and Evolutionary Systems, IES2013

The Automated Fault-Recovery for Four-Legged Robots
using Parallel Genetic Algorithm

Hyunsoo Park, Kyung Joong Kim*
 Dept. of Computer Engineering, Sejong Univ., Seoul, Republic of Korea

Abstract

It is expected that robots could operate autonomously in extreme environments without human intervention.
However, it is not a trivial task to design robots robust to all kinds of faults. On the other hand, Biological entities
have capability to create new behaviors overcoming unexpected damage on their body. This is also one of desirable
properties for industrial robots operating remotely in extreme conditions. In this paper, we propose to use a bio-
inspired learning algorithm to generate new behaviors on a four-legged robot against unexpected body damages.
Since the learning algorithm can be accelerated using parallelism on multiple machines, it is possible to adapt to
changes (damages) quickly using remote computational resources. Experimental results show that the robot could

© 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the Program Committee of IES2013.

Keywords: fault-tolerant; robot; parallel genetic algorithm; neural network; physical-based simulation

1. Introduction

physical damage on their body allowing organism to survive for long-time. For
example, a lizard uses four legs with one tail to generate its movements and the animal could recover its motion
from losing one leg or tail by slightly adapting its behavioral patterns. This property is also desirable for mechanical

* Corresponding author.

E-mail address: hspark@sju.ac.kr (Hyunsoo Park), kimkj@sejong.ac.kr (Kyung Joong Kim).

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the Program Committee of IES2013

159 Hyunsoo Park and Kyung Joong Kim / Procedia Computer Science 24 (2013) 158 – 166

robots operating in extreme environments without human operator [1]. Since humans are not close to the robot, the
on.

-time. For
example, a lizard uses four legs with one tail to generate its movements and the animal could recover its motion
from losing one leg or tail by slightly adapting its behavioral patterns. This property is also desirable for mechanical
robots operating in extreme environments without human operator [1]. Since humans are not close to the robot, the

lity of successful mission completion.
The easiest way to make the robot as fault-tolerant is to have redundant hardware [2]. However, redundancy is

costly expensive and it often makes the control system complex. It is not possible to consider all possible faults prior
to damage but stores all the solutions for known faults. To overcome those limits, it needs a mechanism to recover
from unexpected damages [3]. In this approach, the robot executes machine learning algorithms to learn a new
behavior if it detects broken part of body. Because the old control mechanism designed for intact body would fail to
work correctly, it is necessary to learn new skills suitable for the new body. This allows the robot lose its
functionality gracefully instead of radical performance degradation.

In this paper, we propose to use Parallel Genetic Algorithm (PGA) to generate a new compensatory behavior for
. (a)

reproduce new genes adaptable to changing environments [4]. It has been widely used to solve engineering
optimization problems and known to be strong for global search [5][6]. And there are many works automatically
generate robot controller using GA or GA like evolutionary techniques [7][8][9][10][11]. Initially, it generates a
population of solutions represented as a bit-string randomly and evaluates their goodness. Based on the fitness to the
problem, they can reproduce their offspring (slightly modified solutions) for the next generation using mutation and
crossover operations. It is possible to accelerate the speed of the genetic algorithm using parallelism with a cluster of
computers [12], or General Purpose Graphic Processing Units (GPGPU)[13]. It allows the rapid adaptation of robot
controllers for the emergency situations.

2. Robot

2.1. Robot body and controller

A four-legged robot was used for our experiments. The robot has four touch sensors and it returns positive value
if the leg touches down on the ground. The robot has one box-shaped body and four legs with eight joints in total
(Fig. 1. (b)). Simulation environment have no obstacle plane ground and physics engine ODE (Open Dynamics
Engine) [14]. This simulation is based on [15].

(a) Fault recovery mechanism (b) Four-legged robot

Fig. 1.Fourlegged robot and Fault recovery mechanism

160 Hyunsoo Park and Kyung Joong Kim / Procedia Computer Science 24 (2013) 158 – 166

A simple neural controller gets inputs from the touch sensors and outputs the actions of the eight motors attached
to the joints. In total, the neural network has 32 weight parameters. The genetic algorithm encodes the vector of
weights as an array of real values. If the robot detects damage on its body, it executes the parallel genetic algorithm
(PGA) to learn new behaviors quickly. It means robot generate new neural controller using evolving technique to
determine weight parameter of each links in order to adapt to damaged body.

(a) Neural controller (b) Placement of sensor and actuator

Fig. 2. Relation of neural controller and sensor/actuators (output neuron number is corresponding to joint number)

Fig. 2 motors.
Sensors are labeled i1-i4 and motors are labeled o1-o8. The sensors are attached to the end of legs and motors are
placed in the joints connecting robot parts. If a leg touches down on the ground, attached sensor transmits positive
value to the neural controller.

2.2. Intact behavior evolved

We as

right direction or X-axis positive direction. Robot remembers this behavior, when simulation robot compares with
this (baseline) behavior and current (simulated) behavior in same intention. If these two trajectories are different
significantly than robot thinks some fault is occurred and try to adapt this fault using genetic algorithm with
simulation environment.

The intact behavior of the robot is evolved using genetic algorithm. Fitness function measures the distance
traveled to specific direction by the controller. It is interesting that the evolved controller shows curved trajectories

(a) Intention and real movement trajectory (b) Sequence of robot legs touched on the ground

Fig. 3. Movement of evolved intact body controller

161 Hyunsoo Park and Kyung Joong Kim / Procedia Computer Science 24 (2013) 158 – 166

Most of cases evolved
trot, canter and gallop [16]. Gallop is the fastest gait. On the other hand, it is unstable than others gaits. When initial
stage of evolution, the robot is in low speed and its movement is different to the gallop rather than it is similar to
walk, trot or canter. It is more stable gaits. The robot touches down on the ground using different legs in turn. It
seems like horse riding (Fig. 3. (b)).

In this case, stability can measure by how many legs on ground at each time. For example, when the robot move
high speed (perform gallop gaits) than its only one leg on ground at a time, even between each footfall no leg on
ground in short time. Contrary, when the robot move low speed (perform walk gaits) always three leg on the ground
and only on leg move. If there are some obstacles or disturbance, the robot can perform walk gaits easily than gallop.

Because we define fitness that how far robot traveled to specific direction (Intention) and there are no obstacles
and disturbance, most of evolved controllers perform gallop gaits not walk gaits. Biological entity like horse evolved
in long time to perform this gait in order to move high speed. Therefore maybe gallop gait is the most efficiency
movement in these conditions.

(a) Intact body trajectory

(b) Damaged body trajectories

Fig. 4. Baseline trajectories (a) dotted line trajectory of robot s body center, red arrow mean robot s intention; (b) Damaged body trajectories with
the best controller

move as far as possible along x- -
have front, back, ri
two possible front side of the robot. First front side is between joint 3, 7 and 2, 6 and second front side is between
joint 2, 6 and 1, 5. If one of these
of the robot is curved line. Become which side become front side is depend on initial simulation state. In this
experiments condition the side between joint 2, 6 and 1, 5 become front side.

Fig. 4. (a)

time. But, robot has limitation by structure of body, controller, initial condition in simulation and etc. so, robot
-

axis) is 42.441. X-axis m -axis means left and right side directions.
Fig. 4. (b) shows example trajectories of the best controller with various damaged body. With intact body the best

controller could travel along X-axis over 40. But, w
10.

3. Fault recovery algorithm

In this paper, we use typical Real-Value Genetic Algorithm (RVGA) to create new neural controller. We modify
the evaluation stage to use parallel processing. Because the evolution requires complicated robot simulation with a
physics engine, therefore the evaluation stage becomes a bottleneck for rapid adaptation.

162 Hyunsoo Park and Kyung Joong Kim / Procedia Computer Science 24 (2013) 158 – 166

3.1. Initialization

Initially, it creates randomly a set of the array each encoding different neural network. Each array is consist 32
real-values range in [-
population.

3.2. Crossover and mutation

We use crossover and mutation for generate next offspring. In crossover stage, we choose randomly two arrays
(neural controller) from population. These selected arrays call parents, and generate offspring controller from

in

manner, create offspring same number of parents. If total parents size is N, than creates N offspring. In mutation
stage, randomly add small number N(0, 1) to each element in very small probability.

3.3. Evaluation

In this work, the goal of the recovery mechanism is to make its trajectory with the damaged body as close as
possible to the intact one. The similarity between new trajectory and the original one is calculated using sampling-
based method. It chooses 100 points (x, y coordinates) to get Euclidian distance between them. bti means baseline

cti

100

0
)i i

i
fitness distance bt ct(,,i ,

Evaluation stage is very time-consuming job. Because of, each evaluation is complicated physics-based robot
simulation. Thus we try to parallel processing to accelerate this stage. But, other stage is relatively consume trivial
time in modern computer therefore other run serial.

Fig. 5. Parallel processing procedure for evaluation

163 Hyunsoo Park and Kyung Joong Kim / Procedia Computer Science 24 (2013) 158 – 166

Evaluation stage is very easy to split independent jobs. It is not need to interact others that to evaluate each
individual (neural controller). So, we apply classical fork-join model. Each neural controller runs on separated

 [17] module that parallel processing framework supporting simple clustering. Python is script language, it
support vary useful modules (library), easy to understand and fast development. Parallel Python is one of parallel
processing framework, it support process based parallel processing, fault-tolerance, scalability, scheduling. Its usage
is very easy and it is reliable. Our purpose is not optimized GA to parallel processing than excess use of resources
with at least effort. Thus, we use various machines in cluster.

Fig. 5 shows parallel processing steps. (1) Make job pools in main process. Work processes are running in other
machines. (2) Scheduler assign job to worker process, one job per one core. If job is fail then scheduler reassign job
to other server. Of course, if worker process job is finished, than scheduler assign other job to worker process. (3)
Job running is complete then, job returns fitness value to main process. (4) Finished job wait end of evaluation stage,
when all jobs are complete. It is synchronization overhead. Each evaluation executes independently but, it is need to
complete all evaluations to proceed to next stage (selection). Therefore, population size has to large enough to
minimize overhead. If population size is too small, then many processes wait until the last evaluation is complete.

3.4. Selection

In this paper, selection method is simple. Choose best half population from entire population. Other half
population did not selected is delete from population. To achieve this, just sort by fitness and delete half from end of

 some sort of elitist method.

4. Experimental results

In our experiments, the population size is 50 and the maximum number of generations is 300. In our work, we
use five computers in total 14 cores to parallelize the genetic algorithm. It is 6-7 times faster than one core computer
(single worker process). Table 1 summarizes the parameters.

Table 1. An example of a table

Condition Values

Population 50

Generations 300

Crossover rate 0.9

Mutation rate 0.05

Cluster hosts 14 cores of various CPUs (6-7 times speedups)

of experiments 5 times

We give damage to each joint and run the PGA searching for a new controller suitable to the changed body topology.
The distance traveled by the new controller is compared with the one from the intact body. We run the experiments
five times for each joint. Its results are summarized in Table 2. Performance recovery ratio is measured by the
distance traveled by the new controller compared to the original one. Fig. 6 shows the trajectories of five recovery
runs (dotted line from the intact body and the solid lines are from new controllers recovered).

164 Hyunsoo Park and Kyung Joong Kim / Procedia Computer Science 24 (2013) 158 – 166

Table 2. Summary of the experimental results (1-4 are upper and 5-8 are lower joints)

Joints # Average distance traveled Performance recovery ratio

1 29.388 3.272 69.2 %

2 30.722 5.425 72.3 %

3 26.182 2.088 61.6 %

4 23.477 4.133 55.2 %

5 17.724 2.086 41.7 %

6 23.805 4.388 56.0 %

7 24.475 2.929 57.6 %

8 17.375 4.220 40.9 %

Experimental results show that the controller newly generated can recover the original performance about 40%-
70%. It is revealed that severe upper joint failure (40%~57% recovered) is more difficult to be recovered than lower
joint disconnection (55%~70% recovered). Upper joint is more important than lower joint because it result in losing
entire leg. However, lower joint disconnection affects only half of leg. Fig. 6 shows trajectories of each condition.

(a) Joint 1 broken

(b) Joint 2 broken

(c) Joint 3 broken

(d) Joint 4 broken

(e) Joint 5 broken

(f) Joint 6 broken

(g) Joint 7 broken

(h) Joint 8 broken

Fig. 6. Trajectories of new controller with the damaged body (dotted line is for the original intact trajectory)

Fig. 7
the ground. The leg in the opposite side touches down at the next time. Undamaged robot leg can push the ground to
perform the gallop movement. If lower joint is disconnected, then left half of leg can touch down into ground and

ected, the robot cannot push the ground, so it cannot
imitate the gallop movement

165 Hyunsoo Park and Kyung Joong Kim / Procedia Computer Science 24 (2013) 158 – 166

Fig. 7. The analysis of the behaviors of the robots with different levels of damages

a specific part is more

evolved robot actually shows big left curve. In this condition, some legs are more important than others. If
performance recovery ratio is lower than others, it means that the part is more important than others.

When the lower joint 1~4 are broken, joint 3 (61.6 % recovered) and joint 4 (55.2 % recovered) are more
important than the joint 1 (69.2% recovered) and joint 2 (72.
Because rear legs push the ground to move body forward, the damage on the rear leg reduces the moving force into
the forwarding direction.

Fig. 8. Fault recovery steps (step 1: intact body, step 2: losing the right lower joint, step 3-step 6: the new behaviors for the changed body)

Fig. 8 shows the fault recovery process step by step. The step 1 shows the robot without damage and uses whole
body to move forward. In the step 2, the robot loses his right lower leg. As a result, its original controller fails to
produce successful behavior to go forward. In the step 3, the robot tries to find a new controller suitable for the
damage body. The step 3~6 show a new body movement evolved on the damaged one. It uses the broken leg as a
leverage to move forward.

5. Conclusion and future work

In this paper, we show that four-legged robot simulated in a physics-based simulator (Open Dynamics Engine)
c algorithm is adopted to accelerate the

Robots continuously monitor its behavior and detect the faults. In case of the fault detected, the robot tries to adapt
its behavior to the changed situation. It is rarely true that the controller originally designed for the ideal situation
could work as the same way with the big changes.

It shows that the evolution can be accelerated about 6-7 times than the normal settings and the adaptation can
recover the original performance about 40%-70%. From the different recovery ratio, it is possible to guess the
relative importance of each part of the robot to generate the original behavior. This insight is useful to predict the

-tolerance on the different types of damages.

has different relevance to the behaviors currently used,
it is interesting to co-evolve the basic behavior and the body topology robust to the damages.

166 Hyunsoo Park and Kyung Joong Kim / Procedia Computer Science 24 (2013) 158 – 166

Acknowledgements

 This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (2013R1A2A2A01016589, 2010-0018950).

References

[1] ,
Advanced Science and Technology, vol. 3, pp. 69-78, February 2009.

[2] R. Isermann, Fault-Diagonosis Systems, An Introduction from Fault Detection to Fault Tolerant, Spring, 2005.
[3] -modeling, , pp. 1118-1121, November

2006.
[4] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989.
[5] tion,

Journal of Advanced Science and Technology, vol. 30, pp. 55-65, May 2011.
[6] employees at

mall type shops, International Journal of Advanced Science and Technology, vol. 14, pp. 1-14, January 2010.
[7] , -110, June 1993.
[8] S. Nolfi, and D. Floreano, Evolutionary Robotics: the biology, intelligence, and technology of self-organizing machines, MIT press, 2004.
[9] J. A. Meyer, P. Husbands, and I. Harvey, Evolutionary robotics: a survey of applications and problems, Springer, pp. 1-21, 1998.
[10] ty,

Proceedings of the 9th international Conference on Intelligent Autonomous System, pp. 11-18, 2006.
[11] D. Floreano and L ,

doi:10.1371/journal.pbio.1000292, January 2010.
[12] a cluster of workstations: traveling sales problem,

a case study, -488, January 2001.
[13] -based acceleration of the genetic algorithm,
[14] Open Dynamics Engine, http://www.ode.org/ .
[15] Ludobot simulation, http://www.uvm.edu/~ludobots/ .
[16] E. S. Harris, Horse Gaits, Balance and Movements, Howell Book House, 1993.
[17] V. Vanovschi, Parallel Python Software, http://www.parallelpython.com/.

