
Copyright © 2012 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
WASA 2012, Singapore, November 26 – 27, 2012.
© 2012 ACM 978-1-4503-1835-8/12/0011 $15.00

Prediction of Early Stage Opponents Strategy for StarCraft AI
using Scouting and Machine Learning

Hyunsoo Park∗

Dept. of Computer Engineering, Sejong Univ.
Ho-Chul Cho†

Dept. of Computer Engineering, Sejong Univ.
KwangYeol Lee‡

Dept. of Electronics Engineering, Sejong Univ.
Kyung-Joong Kim§

Dept. of Computer Engineering, Sejong Univ.

Abstract

StarCraft is one of the most famous Real-Time Strategy Games and
there have been several competitions on AI bots. In order to win
StarCraft, players have to predict their opponents strategy and re-
spond properly. Human players used to scout their opponent ter-
ritory using a unit and gathering information through direct obser-
vation to predict their opponents strategy. The accurate prediction
of an opponents strategy gives players a big advantage in the early
stage of a game. Usually, strategies of StarCraft can be divided into
two parts: fast and slow attack strategies. Initial attack timing is an
important factor of game strategies. In this paper, we apply a scout-
ing algorithm and various machine learning algorithms to predict an
opponents attack timing (strategy). Training data are collected from
the games between our Xelnaga bot with the scouting algorithm and
various online human players. Experimental results show that the
machine learning approach based on realistic scouting data can be
beneficial in predicting the opponents early-stage strategy.

CR Categories: I.2.1 [Artificial Intelligence]: Applications and
Expert Systems—Games I.2.6 [Artificial Intelligence]: Learning—
Knowlege Acquisition;

Keywords: StarCraft, game AI, scouting, strategy prediction, ma-
chine learning, artificial intelligence

1 Introduction

StarCraft is a famous Real-Time Strategy (RTS) game developed by
Blizzard Entertainment in 1998. Academic conferences for game
AI (IEEE CIG and AAAI AIIDE 1) have open competitions for
StarCraft AI [Kim and Cho 2012]. It is still quite challenging to
develop AI for the game because it should handle a number of units
and buildings while considering resource management and high-
level tactics. Also, there is fog-of-war and the opponents territory is
not visible. The only way to overcome that uncertainty is by send-
ing units into the enemys area allowing limited visibility around
the unit. It is highly dependent on the level of the players skills to
do scouting and guessing the opponents strategy from the partial
information.

Based on our experience at the CIG 2011 competition, it is common

∗e-mail:hspark@sju.ac.kr
†e-mail:chc2212@naver.com
‡e-mail:primal13@daum.net
§e-mail:kimkj@sejong.ac.kr ,corresponding author
1http://eis.ucsc.edu/StarCraftAICompetition/

that many AI bots use only pre-fixed build orders without scout-
ing. There is no change of their strategy even when they play again
against the same opponent. Although it is desirable to scout, infer
the others strategy and change ones own strategy, it is challenging
to implement these.

In 2011, we submitted the Xelnaga bot to the CIG 2011 StarCraft AI
competition. The program is based on several build orders carefully
chosen from experienced human players. Although the bot uses
only pre-fixed build orders, it is strong compared to a number of
other bots. However, the bot is weak against an opponent with a
very fast, unexpected attack or very good defensive behavior. So,
we recognized our bot needs to predict an opponents initial strategy,
especially the opponents attack timing.

Weber et al. propose to use professional human players replay files
as a source of data mining [Weber and Mateas 2009]. It is pos-
sible to get text-based information on players actions in the game
using specialized programs (replay browser 2). In the work, they
report that machine learning can be useful to predict the strategy of
an opponent in the early stage of the game. In the analysis, they
pose a strong assumption on the visibility of information. In the
first analysis, they assume that there is no fog-of-war and all the in-
formation of the opponent is used to predict strategy. In the second
experiment, they add random noise and missing data to simulate
the fog-of-war. This is still not realistic. Besides this work, there
have been several others that use the replay files to learn the strat-
egy prediction models [Hsieh and Sun 2008; Kim and Cho 2011].
However, they assume the same unrealistic settings.

Figure 1: An overview of the proposed methods.

In this work, we plan to collect realistic data to predict an oppo-
nents strategy. The first step is adding scouting functionality to our
bot. It needs navigation of the scouting unit to maximize survival
time and information coverage. Instead of using professional hu-
man players replay files, our bot plays a number of games against
common human players. Our program automatically records only
visible units and buildings of the human player opponent periodi-
cally while playing the game. In this way, we can collect realistic

2http://lmrb.net/

7

data to train prediction models. Each game is labeled as fast or
slow attack automatically (If the attack is faster than our attack, it is
defined as fast). Several machine learning algorithms are trained to
learn the strategy inference functions. Figure 1 shows the schematic
diagram of the proposed methods.

2 Background

2.1 StarCraft AI Competition and Xelnaga

The first StarCraft AI competition was at the AIIDE 2010 (AAAI
conference on Artificial Intelligence and Interactive Digital Enter-
tainment). At the event, more than 26 teams registered. In the IEEE
Conference on Computational Intelligence and Games (CIG 2011),
there was a StarCraft AI competition. In the event, ten teams reg-
istered. Xelnaga (Our team) was ranked 3rd in this event. It is
a pure rule-based system and its race is Protoss. The main build
order was designed by Ho-Chul Cho (4292 wins and 1521 losses
on Battle.net). It chooses different strategy depending on the race
of opponents. In the final round of the CIG 2011 3, there were
Skynet, UAB, Xelnaga and BotQ [Synnaeve and Bessiere 2011].
They played 30 games against each other. Xelnaga won 11 games.
Careful analysis shows that Xelnaga is weak against Skynet and
UAB. Xelnaga lost games if there were very early attacks or de-
fensive play. From this observation, we determined to implement
scouting and early detection of opponents strategy using machine
learning.

2.2 StarCraft scouting

In StarCraft, experienced human players start the game by sending
their construction units outside of their territory. The purpose of
this scouting is to find the territory of opponents. In the game, the
players position is randomly chosen. If the human player plans to
execute a fast attack, it significantly changes the build order. It fo-
cuses on massive production of attack units as soon as possible and
gives up defensive or long-term strategies. If the human player per-
formed offense successfully in a fast attack, he or she easily wins
the game. However, there is the possibility that this fast attack can
fail when the opponent predicts player’s attack. In that case, it is
quite difficult to change the final outcome. The purpose of scouting
is to see the buildings and units in the opponents area. If the scout-
ing unit successfully enters into the area, it removes the fog-of-war
while the scouting unit survives. Although the revealed area is lim-
ited to the area around the unit, it is very useful to get the opponents
build orders. The appearance of the scouting unit is not good news
to the opponent players and they try to kill the scouting unit and
delay their construction of critical units to hide their build orders.

Table 1 summarizes the state-of-the-art for scouting for the Star-
Craft AI bots. It shows that only a small number of participants
implement scouting. Most of them use scouting to disturb oppo-
nents. In those cases, it is not necessary to collect much informa-
tion. SPARs scouting behavior is also similar to the humans one.
However, there is no article about their approaches.

2.3 Prediction of opponent’s strategy using replays

Hsieh et al. collected thousands of StarCraft game replays from Go-
suGamers.net game community [Hsieh and Sun 2008]. They used
case-based reasoning to learn and predict individual players strate-
gies. In their work, cases in CBR contain constructed buildings,
units and other resources. They reported that predictive accuracy

3http://ls11-www.cs.uni-dortmund.de/rts-competition/starcraft-cig2011

Table 1: Comparison of StarCraft AI bots scouting.

AI Player Race Scouting Comments
Aiur Protoss X

BTHAI Zerg X
EvoBot Terran X
Nova Terran O Disturbance

Skynet Protoss O Disturbance
BotQ Protoss X
LSAI Zerg O Overload

UalbertaBot Protoss O Disturbance
Beast Jelly Protoss X
Bigbrother Zerg X
Cromulent Terran X

EISBot [Weber et al. 2011] Protoss X
ItalyUndermind Zerg O Disturbance

Quorum Terran X
SPAR Protoss O Observation

Undermind Terran X

increased when more replays were inputted into their decision sys-
tem.

Weber et al. collected 5493 StarCraft game replays from Go-
suGamers.net and TeamLiquid.net, two popular StarCraft web-
sites [Weber and Mateas 2009]. They encoded replays as feature
vectors and labeled them using rules based on analysis of expert
play. They represented strategy prediction as a multi-class classi-
fication problem and applied J48, k-NN, NNge, and LogitBoost.
They reported that different algorithms are better at different stages
of the game. NNge and k-NN performed well in the initial stage of
the game, but degrade in the later stages of the game.

Ontanon et al. used StarCraft replays in order to build a case li-
brary for D2, a real-time case-based planning system designed to
play RTS games [Weber and Ontañón 2010]. They defined goal on-
tology for StarCraft and developed a rule set for recognizing when
goals are being pursued. The goal ontology was formulated based
on analysis of professional StarCraft game play.

Kim et al. tried to analyze build-orders and the relations among
them from game replays [Kim et al. 2010]. For example, they fig-
ured out how many times build-order A won against build-order B.
They used a similarity measure on unit production, building con-
struction, and upgrade order to categorize build-orders. They united
build-orders as a tree to choose an appropriate one based on an en-
emys state and winning ratio.

3 Proposed methods

3.1 Overview of scouting

Figure 2: An overview of machine learning procedure.

8

Our proposed method consisted of three steps. Figure 2 shows an
overview of these steps. (1) Find the opponent base using one of the
initial construction unit and the unit should survive as long as pos-
sible while collecting the opponents structures/units information. If
the scouting unit is destroyed by the opponent, the data collection is
finished. (2) The next step is to extract important information from
the observed raw data. It is necessary to define features for training
classifiers. And the view from the scouting unit covers only small
parts of the opponents area, it is necessary to fuse the information.
(3) The final step is to generate a prediction model from the infor-
mation.

3.2 Scouting algorithms

3.2.1 Navigation

The purpose of this step is to find the opponents base and collect
data about it. The scouting unit is a worker (resource collector)
from one of the races. Instead of mining the resources, they explore
the dark area to find the opponents base. The first step is to find the
location. There are several possible areas for the opponents position
on the general game map. A scouting unit checks all candidate
areas.

After finding the opponent base area, then the recon unit scouts the
area. There are two important goals in this step. (1) The recon unit
should survive in the hostile area as long as possible. (2) The unit
should reveal as many of the opponents structures/units as possible.
However, it is not trivial to satisfy both of them. To collect data
precisely, the recon unit should be close to the opponents struc-
tures/units. But, this increases the risk that the recon unit will be
damaged or destroyed. So, the recon unit has to be close to them,
but not too close to be attacked.

Our recon unit is mimicking the human players scouting. They
continuously rotate the area keeping constant distance to the build-
ings. If the unit is inside the opponents area, the first task is to
go to the main building (Nexus, Command Center, or Hatchery).
When the opponents building hits the visible area of the scouting
unit, it changes the navigation path. We only consider an oppo-
nents buildings to decide the direction of movement. When the
recon unit sees an opponents building, it changes its direction 90◦

CCW (Counter Clock Wise) or CW (Clock Wise). So, the recon
unit orbits round the opponents structure. CCW or CW is not im-
portant in this method.

Ideally, the recon unit orbits perfectly around the opponents build-
ing keeping the same distance. However, the recon unit is not ro-
tating in an ideal circle. This is caused by the update rate (update
per 13 game ticks). If the update rate is increased, the recon units
movements are close to the circle but it consumes much computa-
tional resource (critical to a real-time game). Instead of adjusting
the updating rate, we change the rotation angle. Testing on 75◦,
80◦, 85◦, and 90◦ show that 80◦ is the best one.

When there is more than one opponent structure in the recon units
view, it regards them as one big virtual building. If there are N
opponents buildings in the recon units view, each building is iden-
tified as O1, O2, O3, , and ON . The position of the Oi is defined as
(xi, yi). If the position of the recon unit is defined as (rx, ry), the
vector for each building is defined as Vi(xi − rx, yi − ry).

V =

N∑
i=1

Vi (1)

V Rotate CCW with 80◦, the final vector is the direction of the
recon unit (Figure 3).

(a) The recon unit is moving to the command center.

(b) The recon unit sees one opponents structure. The di-
rection is changed to M.

(c) If there are two structures in the vision area, it calcu-
lates the S0+S1 and change the direction to M.

(d) If there is only one building, it calculates the direction
M only based on it.

Figure 3: An example of a scouting path calculation.

9

Our controller continuously records the observed buildings and
units per second while the scouting unit is alive. If the unit is killed
by an attack by the opponent, the data collection is finished. Table 2
shows an example of recorded raw data from the scouting units. The
race of the opponent is Terran. At 122 seconds from the beginning
of the game, the recon unit sees one Terran SCV unit (Its ID is 138).
At 123 seconds, there are SCV (ID=138) and Command Center
(ID=139) in the view. At 124 seconds, seven units/buildings are
visible.

Table 2: An example of raw data.

Time Building/Unit ID
122 Terran SCV 138
123 Terran SCV 138
123 Terran Command Center 139
124 Terran SCV 138
124 Terran SCV 144
124 Terran Barracks 147
124 Terran SCV 143
124 Terran SCV 146
124 Terran SCV 142
124 Terran Command Center 139
125 Terran SCV 144
125 Terran Barracks 147

...

3.2.2 Information fusion

The raw data contains all the information observed during the scout-
ing. However, it is not easy to make a decision on the opponents
strategy from the raw data. It is necessary to fuse information from
the multiple scenes into a summarized one. In this work, we pro-
pose to use two different fusing methods.

Table 3: Examples of preprocessed data.

(a) An example of count data.

Structure/Units Count
Terran Command Center 1

Terran Marine 2
Terran Barracks 1
Terran Refinery 1

Terran Supply Depot 3
Terran SCV 20

Terran Factory 1

(b) An example of time data.

Structure/Units Time
Terran Command Center 1 86

Terran SCV 1 87
Terran SCV 2 87
Terran SCV 3 88

Terran Refinery 1 91
Terran Supply Depot 1 94

Terran Barracks 1 110
Terran Supply Depot 2 140

Terran Factory 1 169
Terran Marine 1 184
Terran Marine 2 203

Terran Supply Depot 3 208

Figure 3(a) shows the count-based data which counts the number of
unique objects observed during the scouting periods until the recon

unit is destroyed. For example, the number of Command Center is
one and the number of SCV during the scouting is 20. Because of
the unique ID, it is possible to count the number of objects correctly.
The data show the existence of specific objects and the mass of
them.

Figure 3(b) shows a different view of the raw data by consid-
ering the time information. In the data, it records the time
that the buildings or units are observed. For example, the
Terran Command Center 1 means the time that the first Com-
mand Center is observed at 86 seconds. SCV 1, SCV 2, and
SCV 3 record the observed time for first SCV, second SCV, and
third SCV observed, respectively. From the data, it is not easy to
figure out the mass of the units or buildings because it only records
the times for the first two or three units or buildings.

3.2.3 Prediction of opponent’s strategy

The final stage is to make a decision on the opponents strategy from
the fused data. If expert knowledge is available, it can be designed
using simple rules. But, it is not trivial to design such rules. First
of all, such expert knowledge is not easily defined. Secondly, the
information from the scouting unit is not perfect and there is uncer-
tain (unobserved or hidden) information.

The solution to this problem is applying machine learning. Simply,
we categorize the opponent strategy in the training data into fast or
slow. If the opponent attacks before Xelnaga attacks, it is fast and
vice versa. The raw data are converted into summarized form using
the preprocessing (information fusion) algorithms. Finally, a set of
machine learning algorithms is applied on the summarized data to
learn the mapping from the observed information into a class (fast
or slow). In this work, the machine learning algorithm is imple-
mented using WEKA [Witten et al. 2011].

4 Experimental results and discussion

4.1 Data collection

The most difficult problem for the StarCraft data mining is to col-
lect data. Because we need data to train our scouting-based bot,
the replay files accessible on the internet are not useful. Although
we considered generating the data by playing games between our
bot and other bots, there are not enough bots available and most of
the bots strategies and behavior are too simple. Our choice was to
collect the data from the games between our bot and many human
players. The largest place to play games is Blizzards official Bat-
tle.net. However, Chaos Launcher and BWAPI used for our bot are
detected as a cheating program and the connection is refused.

We collected data from a free Battle.net source (private Battle.net
server, http://brainclan.com). On the private server, it is possible
to connect but human players usually have cheating detection tools
and refuse games with our bot. Thus, there were a very small num-
ber of cases that a player accepted our bot. In this way, we played
105 games against human players. We used two popular game maps
(Python 1.3 and Fighting Spirit 1.3) on this free server. The games
were converted into the count-based and time-based training data
file (ARFF format for WEKA) for each opponents race.

Table 4: Summary of collected data (win/lose)

vsṪerran vsṖrotoss vsŻerg Total
Fast 10 (0/10) 19 (0/19) 3 (1/2) 32 (1/31)
Slow 17 (5/12) 30 (10/20) 26 (7/19) 73 (22/51)
Total 27 (5/22) 49 (10/39) 29 (8/21) 105 (23/82)

10

Table 4 summarizes the statistics of the games. It shows that our
bot won 23 games (approximately 22%). Because our bot is weak
on the fast attack, most of games identified as fast were lost. How-
ever, for the slow case, the winning ratio was 43%. The players on
the free Battle.net are not professional level but theyre not novice
because they have played the game for a very long time.

Figure 4: Survival time of recon unit.

Every recon unit in all experiments successfully scouted the oppo-
nent base. But when the opponent player trains attack units (ex.
marine, zealot, or zergling), the opponent player tries to destroy the
recon unit. So, all recon units might not be able to avoid destruc-
tion. If the recon unit survived for a long time, the recon unit could
get lots of valuable information. Figure 4 shows the comparison of
survival time of the recon unit in the opponents base according to
the opponents race.

It shows that a Terran player destroys the recon unit in about 200
seconds. It is earlier than with Protoss and Zerg. This is because
the Terran trains Marines with a long-range weapon. Our recon unit
Probe is easily destroyed by the long-range weapon. It is interesting
that there was a small number of fast games against Zerg and the
recon unit survived for a long time because Zerg cant train for a
long-range weapon attack unit in the early stage of the game, so
Zerg players had difficulty destroying our recon unit. Zerg players
seem to give up the fast strategy because our recon unit survived for
a long time and exposed lots of information.

4.2 Machine learning

We have applied thirteen machine learning algorithms to the pre-
processing data. Theyre categorized into rules (ZeroR and oneR),
decision tree (J48, Cart, Decision Stump and Random Forest), lazy
learning (1-NN, and NNge), neural networks (MLP), probabilis-
tic models (Bayesian Network and Nave Bayes), and SVM. Be-
cause the number of samples is small, LOOCV (Leave-One-Out-
Cross Validation) is used. For each classifier, default parameters in
WEKA are used.

Figure 5 shows accuracy of the classification algorithms with three
different feature extraction methods. For the Count features, it
counts the number of unique buildings/units observed. For the Time
features, it records the time information for each event observed.
And the Count+Time feature is a combination of all features.

When the opponent is a Terran player, the best classification algo-
rithm is ZeroR which simply classifies samples into the most fre-
quent classes. It means that in the case of Terran, the machine learn-
ing is not so useful. Because of this, the recon unit couldnt survive

long enough. Terran players Marine (first attack unit) can destroy
the bots recon unit easily. Thus the recon unit cant observe the
opponents next buildings (another Barracks or Factory), but these
buildings are important to specify the opponents strategy. So, it is
not possible to predict whether the strategy is fast or not.

When the opponent is Protoss, we have 49 samples. The results
show that the best combinations are Decision Stump + Time, Cart
+ Count, and MLP + Count. The accuracy is 73.4%. It shows that
the proper choice of the features is important to get the best per-
formance for each classification algorithm. For example, ADTree
shows radical performance improvement if it uses the Count fea-
tures. Nine of the thirteen classification algorithms show better per-
formance if they use the Count features. The combination of the
Count and Time features is not so successful.

When the opponent is Zerg, we have the unbalanced data set. The
number of Fast cases is only three. Because we collected the data by
playing games against human players, it is not possible to control
the choice of his/her strategy. The results show that J48 and ADTree
perfectly classify the samples (100%).

(a) Opponent is Protoss

(b) Opponent is Zerg

Figure 5: Classification accuracy of various machine learning al-
gorithms with different feature extraction methods.

5 Conclusions and future works

Scouting is one of the most important parts of real-time strategy
games with fog-of-war. However, it is still in the early stage of de-
velopment for StarCraft AI competitions. In fact, our team ignored
scouting in the CIG 2011 competition but ranked 3rd. However,
it is essential to send a scouting unit to recognize the build order
of opponents in the early stage of the game to become a strong AI
player. In this paper, we introduce a basic navigation strategy and

11

the use of machine learning to design automatically the recognition
module for opponents strategy.

After implementing the basic navigation strategy for our bot, we
played more than 100 games against human players through a free
Battle.net server. Using the realistic data, we introduced two differ-
ent feature extraction methods and applied several machine learning
algorithms. Although expert knowledge is essential to recognize an
opponents strategy from the observation, it is possible to build the
recognition part automatically with the help of machine learning.

Our navigation strategy is not perfect because it ignores the move-
ment of opponents units. It only considers the position of an oppo-
nents buildings. Also, in the navigation strategy, we assume that all
the buildings have the same level of danger and importance. This
is a strong assumption and needs to be modified. Human players
can survive for a longer time than our bot from these results. It is
necessary to control the scouting unit considering buildings and the
position of attack units. Also, it is desirable to analyze the terrain to
plan the path of the scouting unit. However, because it is a real-time
strategy game, it must be simplified to response quickly. Although
our work focuses on the early stage of scouting, it is still important
in the late stage of the game. However, the scouting in the late time
is more complex than the one in the early stage.

Acknowledgements

This research was supported by Basic Science Research Program
and the Original Technology Research Program for Brain Science
through the National Research Foundation of Korea (NRF) funded
by the Ministry of Education, Science and Technology (2012-
0001749) (2012-0005799)

References

HSIEH, J.-L., AND SUN, C.-T. 2008. Building a player strategy
model by analyzing replays of real-time strategy games. In Pro-
ceedings of the International Joint Conference on Neural Net-
works, IJCNN 2008, part of the IEEE World Congress on Com-
putational Intelligence, WCCI 2008, Hong Kong, China, June
1-6, 2008, IEEE, 3106–3111.

KIM, K.-J., AND CHO, S.-B. 2011. Server-side early detection
of starcraft players with non-standard strategic behavior. In 3rd
International Conference on Internet.

KIM, K.-J., AND CHO, S.-B. 2012. 2011 ieee conference on com-
putational intelligence and games [conference reports]. Compu-
tational Intelligence Magazine, IEEE 7, 1 (feb.), 15 –18.

KIM, J., YOON, K. H., YOON, T., AND LEE, J.-H. 2010. Co-
operative learning by replay files in real-time strategy game. In
Proceedings of the 7th international conference on Cooperative
design, visualization, and engineering, Springer-Verlag, Berlin,
Heidelberg, CDVE’10, 47–51.

SYNNAEVE, G., AND BESSIERE, P. 2011. A bayesian model for
opening prediction in rts games with application to starcraft. In
CIG’11, 281–288.

WEBER, B. G., AND MATEAS, M. 2009. A data mining approach
to strategy prediction. In CIG’09: Proceedings of the 5th inter-
national conference on Computational Intelligence and Games,
IEEE Press, Piscataway, NJ, USA, IEEE Press, 140–147.

WEBER, B. G., AND ONTAÑÓN, S. 2010. Using automated re-
play annotation for case-based planning in games. In ICCBR
Workshop on CBR for Computer Games (ICCBR-Games).

WEBER, B. G., MATEAS, M., AND JHALA, A. 2011. Build-
ing human-level ai for real-time strategy games. In Proceedings
of the AAAI Fall Symposium on Advances in Cognitive Systems,
AAAI Press, San Francisco, California, AAAI Press.

WITTEN, I. H., FRANK, E., AND HALL, M. A. 2011. Data Min-
ing: Practical Machine Learning Tools and Techniques, 3 ed.
Morgan Kaufmann, Amsterdam.

12

