matplotlib
목차
matplotlib
Animation
한글 출력
- 한글 폰트 설치
- 나눔 폰트 설치
- 폰트 캐시 삭제(폰트를 설치해도 폰트를 찾지 못할때)
- windows: ~/.matplotlib/fontList.cache 삭제
- ubuntu: ~/.cache/matplotlib/fontList.cache
import matplotlib import matplotlib.font_manager import matplotlib.pyplot as plt # 'Nanum' 폰트 리스트 출력 print([f.name for f in matplotlib.font_manager.fontManager.ttflist if 'Nanum' in f.name]) # 폰트 변경 matplotlib.rc('font', family="NanumMyeongjo") # or "Noto Sans CJK KR", "Noto Sans Mono CJK KR" plt.title("한글 제목") plt.plot([1, 2, 3], [1, 2, 3])
폰트 사이즈 변경
import matplotlib.pyplot as plt matplotlib.rcParams.update({'font.size': 22}) # or plt.rcParams.update({'font.size': 22}) # tick label size plt.rcParams.update({'xtick.labelsize': 22, 'ytick.labelsize': 22})
ticks format 변경
예제
plt.rcParams.update({'font.family': "NanumMyeongjo"}) # or "Noto Sans CJK KR", "Noto Sans Mono CJK KR" plt.rcParams.update({'font.size': 22}) plt.rcParams.update({'xtick.labelsize': 22, 'ytick.labelsize': 22}) fig, ax = plt.subplots(figsize=(8, 4), clear=True) ax.set_xlabel('Generation') ax.set_ylabel(f'{args.tag}') for cond in dfs: line, = ax.plot(dfs[cond].index, dfs[cond]['50%'], '-', label=cond) ax.fill_between(dfs[cond].index, dfs[cond]['25%'], dfs[cond]['75%'], color=line.get_color(), alpha=0.3) ax.legend() plt.show()
Seaborn
imshow
fig, (ax1, ax2) = plt.subplots(1, 2) cs = list() min_diff = 0.5 xs = np.arange(0, 10).reshape((-1, 1)) ax1.imshow(xs, cmap='gray') for x in xs.reshape(-1): b = x / 10 w = 1 - b if b < 0.5: c = (1 - min_diff) * w + min_diff else: c = (1 - min_diff) * w c = np.clip(c, 0, 1) cs.append(c) ax1.text(0, x, f'{x}', color=(c, c, c), horizontalalignment='center', verticalalignment='center') ax2.scatter(xs, cs) plt.show()
Radar chart
kvs = dict(a=1.0, b=0.2, c=0.4, d=0.5, e=0.7) fig = plt.figure() ax = fig.add_subplot(111, projection='polar') ax.set_title(f'Radar chart') ax.set_ylim([0, 1.0]) theta = np.linspace(0.0, 2 * np.pi, len(kvs) + 1, endpoint=True) ax.set_xticks(theta) ax.set_xticklabels([f'{k}' for k in kvs]) vs = np.hstack([list(kvs.values()), [list(kvs.values())[0]]]) ax.plot(theta, vs) ax.fill_between(theta, 0, vs) plt.show() plt.close()
Subplot
Embedded plot
fig, ax = plt.subplots(1, 1, figsize=(12.8, 9.6)) data = np.array([ np.random.random(2), np.random.random(2), np.random.random(2), ]) subdata = np.array([ np.random.random(3), np.random.random(3), np.random.random(3), ]) scatter = ax.scatter(data[:, 0], data[:, 1], cmap='jet') ax.set_xlim([-0.2, 1.2]) ax.set_ylim([-0.2, 1.2]) for idx, (x, y) in enumerate(data): subdata_ = subdata[idx] box = ax.get_position() width = box.width * 0.2 height = box.height * 0.2 xmin, xmax, ymin, ymax = ax.axis() nx = (x - xmin) / (xmax - xmin) - width / 2 ny = (y - ymin) / (ymax - ymin) - height / 2 inax_position = ax.transAxes.transform([nx, ny]) transFigure = fig.transFigure.inverted() infig_position = transFigure.transform(inax_position) x = infig_position[0] y = infig_position[1] subax = fig.add_axes([x, y, width, height]) subax.get_xaxis().set_visible(False) subax.get_yaxis().set_visible(False) subax.plot(subdata_) plt.show()
Neural Net Weights/Activation
matplotlib.txt · 마지막으로 수정됨: 2024/03/23 02:38 저자 127.0.0.1