particle_swarm_optimization
Particle Swarm Optimization (PSO)
import numpy as np import matplotlib.pyplot as plt from IPython import embed target = np.random.uniform(low=0.0, high=64, size=(1, 2)) def eval_func(particle): dist = ((target - particle) ** 2).sum() ** 0.5 return (64 - dist) / 64 class PSO: def __init__(self, n_particles, n_dims, v_max, v_min, func): super().__init__() # 입자들의 위치와 속도 초기화 self.particles = np.random.uniform(high=v_max, low=v_min, size=(n_particles, n_dims)) diff = v_max - v_min self.velocity = np.random.uniform(high=diff, low=-diff, size=(n_particles, n_dims)) # 개별 입자가 찾은 최적해 및 적합도 self.particle_best = np.random.uniform(high=v_max, low=v_min, size=(n_particles, n_dims)) self.particle_best_fitness = -1e10 * np.ones(n_particles) # 군집이 찾은 최고 적합도 self.swarm_best_fitness = -1e10 # 초기 평가 self.func = func self.eval() def eval(self): # 평가 fitness = [f for f in map(self.func, self.particles)] self.fitness = np.array(fitness, dtype=np.float32) # 개별 입자가 찾은 최적해 및 적합도 갱신 cond = self.fitness > self.particle_best_fitness self.particle_best = np.where(cond.reshape(-1, 1), self.particles, self.particle_best) self.particle_best_fitness = np.where(cond, self.fitness, self.particle_best_fitness) # 군집이 찾은 최적해 및 적합도 갱신 swarm_best_idx = self.fitness.argmax(axis=0) if self.fitness[swarm_best_idx] > self.swarm_best_fitness: self.swarm_best_fitness = self.fitness[swarm_best_idx] self.swarm_best = self.particles[swarm_best_idx] return fitness def step(self, omega=0.33, theta_p=0.33, theta_g=0.33): r_p, r_g = np.random.random(), np.random.random() # 현재 속력 intertia = omega * self.velocity # 자신이 찾은 최적해에 끌리는 힘 to_particle_best = theta_p * r_p * (self.particle_best - self.particles) # 군집이 찾은 최적해에 끌리는 힘 to_swarm_best = theta_g * r_g * (self.swarm_best - self.particles) # 속도 갱신 self.velocity = intertia + to_particle_best + to_swarm_best # 위치 갱신 self.particles = self.particles + self.velocity # 새로운 위치 평가 self.eval() return self.swarm_best, self.swarm_best_fitness def plot(self): m = np.zeros((64, 64)) y = self.particles[:, 0].astype(np.int32).clip(max=63, min=0) x = self.particles[:, 1].astype(np.int32).clip(max=63, min=0) m[y, x] = self.fitness plt.plot([target[0, 0]], [target[0, 1]], 'o') plt.plot([self.swarm_best[0]], [self.swarm_best[1]], 'o') plt.imshow(m.T, cmap='gray', vmax=1.0, vmin=0.0) plt.show() plt.clf() if __name__ == '__main__': pso = PSO(n_particles=20, n_dims=2, v_max=64, v_min=0, func=eval_func) for i in range(20): best, fitness = pso.step() print(i, target, best, fitness) pso.plot() # embed(); exit()
particle_swarm_optimization.txt · 마지막으로 수정됨: 2024/03/23 02:38 저자 127.0.0.1